Собеседование по java
Содержание:
- 15.1. Основные понятия
- 2 Абстракция
- Роль полиморфизма
- Что такое RivaTuner Statistics Server? Как установить, настроить и пользоваться программой?
- Неограниченный доступ
- Решение проблемы
- Когда нужно использовать ООП ¶
- История развития
- Абстракция
- Метаобъектный протокол Common Lisp на примере реализации прототипной объектной системы
- Введение
- Основные понятия объектно-ориентированного программирования
- Роль инкапсуляции
- Что не так с процедурным программированием
- Как настроить пользовательский формат
15.1. Основные понятия
Объектно-ориентированное
программирование (ООП) – это методология
программирования, основанная на
представлении программы в виде
совокупности объектов, каждый из которых
является реализацией определенного
класса
(типа особого вида), причем классы
образуют иерархию на приципах
наследуемости. Под термином объект
понимается «осязаемая сущность, которая
четко проявляет свое поведение».
Объект
характеризуется
-
совокупностью
всех своих свойств и их текущих значений
и -
совокупностью
допустимых для него действий (их называют
методами)
В качестве примера объекта можно привести
животное, свойствами которого могут
быть голова (большая, маленькая, …), уши
(длинные, короткие, … или другие), а
методами (умение принимать пищу, стоять,
сидеть, идти, бежать и т.п.).
Объектно-ориентированная
методология программирования базируется
на следующих принципах:
-
инкапсуляция;
-
наследование;
-
полиморфизм.
Инкапсуляцией
называется объединение в одном объекте
как свойств, так и методов (действий над
ними).
Наследование
предполагает
существование иерархии классов (объектных
типов), в которой между классами,
расположенными на разных уровнях
иерархии, имеют место отношения
наследования свойств и методов — от
объектов вышележащих (родительских)
к объектам нижележащих (дочерних)
классов.
Н
Наследование
– это такое отношение между объектами,
когда один объект повторяет структуру
и поведение другого, принадлежащего к
более высокому уровню в иерархии.
аследование можно определить
так:
Родительские классы называют просто
родителями (прародителями), а дочерние
–потомками.
Классы верхних
уровней иерархии, как правило, не имеют
конкретных экземпляров объектов. Не
существует, например, конкретного живого
организма (объекта), который бы сам по
себе назывался «Млекопитающее» или
«Насекомое». Такие классы называются
абстрактными. Конкретные экземпляры
объектов, или просто объекты, принадлежат
нижележащим уровням иерархии.
Ниже приведен пример иерархии для
насекомых:
Полиморфизм – это способность
объектов разных классов в иерархии
выполнять одно и то же действие по-своему.
(Или иначе, полиморфизм – это придание
одного и того же имени методам для
объектов разных классов в иерархии,
хотя действия в методах различаются).
При объектно-ориентированном
программировании программист только
указывает, какому объекту, какое из
присущих ему действий, требуется
выполнить, и, однажды объявленные
(описанные в программе), объекты сами
будут выполнять их характерными именно
для них способами.
Например, действие «бежать» свойственно
большинству животных, однако каждое из
них (лев, слон, черепаха) выполняет это
действие различным образом. В данном
примере действие «бежать» будет
называться полиморфическим действием,
а многообразие форм проявления этого
действия – полиморфизмом.
Рассмотрим средства языка Турбо Паскаль
для объектно-ориен-тированного
программирования.
2 Абстракция
В рунете народ до сих пор спорит над определением абстракции в ООП. И проблема даже не в том, что все неправы, а в том, что все правы. Чем программа меньше, тем сильнее абстракция привязана к языку Java, чем больше, тем сильнее привязана к моделированию/упрощению объектов реального мира.
Но вроде бы лучшие умы сошлись на том, что:
Абстракция — это использование только тех характеристик объекта, которые с достаточной точностью представляют его в программе. Основная идея состоит в том, чтобы представить объект минимальным набором полей и методов и при этом с достаточной точностью для решаемой задачи.
В языке программирования Java абстракция осуществляется через использование абстрактных классов и интерфейсов.
Абстракция в реальной жизни
Хороший пример абстракции в реальной жизни — описание должностей в компании или организации. Название должности — это одно, а обязанности каждой конкретной должности — это уже совсем другое.
Представьте, что вы проектируете структуру своей будущей компании. Вы можете разделить обязанности секретаря: «расбросать» их по нескольким другим должностям. Можете разбить должность исполнительного директора на несколько независимых должностей: финансовый директор, технический директор, директор по маркетингу, директор по персоналу. Или, например, объединить должности офис-менеджера и рекрутера в одну.
Вы придумываете названия должностей в своей фирме, а потом «расбрасываете» обязанности по этим должностям. Абстракция – отвлечение от целостности объекта и выделение его главных свойств и составляющих, нужных нам.
С точки зрения же программирования, абстракция — это, скажем так, правильное разделение программы на объекты. Обычно любую большую программу можно десятками способов представить в виде взаимодействующих объектов. Абстракция позволяет отобрать главные характеристики и опустить второстепенные.
Роль полиморфизма
Последний принцип ООП — полиморфизм. Он обозначает способность языка трактовать связанные объекты в сходной манере. В частности, этот принцип ООП позволяет базовому классу определять набор членов (формально называемый полиморфным
интерфейсом), которые доступны всем наследникам. Полиморфный интерфейс класса
конструируется с использованием любого количества виртуальных или абстрактных членов.
По сути, виртуальный член — это член базового класса, определяющий реализацию
по умолчанию, которая может быть изменена (или, говоря более формально, переопределена) в производном классе. В отличие от него, абстрактный метод — это член
базового класса, который не предусматривает реализации по умолчанию, а предлагает только сигнатуру. Когда класс наследуется от базового класса, определяющего абстрактный метод, этот метод обязательно должен быть переопределен в производном
классе. В любом случае, когда производные классы переопределяют члены, определенные в базовом классе, они по существу переопределяют свою реакцию на один и тот же
запрос.
Рассмотрим для примера стек, т.е. область памяти, функционирующую по принципу «последним
пришел — первым обслужен». Допустим, что в программе требуются три разных типа
стеков: один — для целых значений, другой — для значений с плавающей точкой, третий — для символьных значений. В данном примере алгоритм, реализующий все эти
стеки, остается неизменным, несмотря на то, что в них сохраняются разнотипные данные. В языке, не являющемся объектно-ориентированным, для этой цели пришлось бы
создать три разных набора стековых подпрограмм с разными именами. Но благодаря
полиморфизму для реализации всех трех типов стеков в C# достаточно создать лишь один общий набор подпрограмм. Зная, как пользоваться одним стеком, вы сумеете
воспользоваться и остальными.
В более общем смысле понятие полиморфизма нередко выражается следующим
образом: «один интерфейс — множество методов». Это означает, что для группы взаимосвязанных действий можно разработать общий интерфейс. Полиморфизм помогает
упростить программу, позволяя использовать один и тот же интерфейс для описания
общего класса действий. Выбрать конкретное действие (т.е. метод) в каждом отдельном
случае — это задача компилятора. Программисту не нужно делать это самому. Ему достаточно запомнить и правильно использовать общий интерфейс.
Что такое RivaTuner Statistics Server? Как установить, настроить и пользоваться программой?
Неограниченный доступ
В программе, написанной, например, на C, есть два вида данных. Локальные скрыты внутри функции и другими процедурами не используются.
Когда две и более функций должны получить доступ к одним и тем же данным, то последние должны быть глобальными. Такими, например, являются сведения об учитываемых предметах. Глобальные данные могут быть доступны любой процедуре.
В большой программе есть множество функций и много глобальных элементов. Проблема процедурной парадигмы состоит в том, что это приводит к еще большему числу потенциальных связей между ними.
Такое большое количество соединений вызывает несколько затруднений. Во-первых, это осложняет понимание структуры программы. Во-вторых, затрудняет внесение изменений. Изменение в глобальном элементе данных может потребовать корректирования всех функций, имеющих к нему доступ.
Например, в программе учета кто-то решит, что код учитываемого предмета должен состоять не из 5 цифр, а из 12. Это потребует изменить тип данных с short на long. Теперь связанные с кодом функции должны быть изменены для работы с новым форматом.
Когда элементы изменяются в большом приложении, трудно сказать, какие процедуры имеют к ним доступ. Но даже если это выяснить, их изменение может привести к неправильной работе с другими глобальными данными. Все связано со всем остальным, поэтому изменение в одном месте аукнется в другом.
Решение проблемы
Объект в ООП представляется как совокупность данных и функций. Только процедуры, которые называются функциями-членами в C ++, позволяют получить его значения. Данные скрыты и защищены от изменения. Значения и функции инкапсулированы в одно целое. Инкапсуляция и упрятывание – основные термины в описании ОО-языков.
Если требуется изменить данные, точно известно, какие функции взаимодействуют с ними. Никакие другие процедуры не могут получить к ним доступ. Это упрощает написание, отладку и поддержание программы.
Приложение, как правило, состоит из нескольких объектов, которые взаимодействуют друг с другом, вызывая функции-члены.
Сегодня наиболее широко используемый язык ООП (объектно-ориентированное программирование) – C++ (плюс-плюс). В Java отсутствуют некоторые функции, такие как указатели, шаблоны и множественное наследование, что делает его менее мощным и универсальным, чем C++. C# еще не достиг популярности C++.
Следует отметить, что так называемые функции-члены в C++ называются методами в некоторых других ОО-языках, таких как Smalltalk. Элементы данных называются атрибутами. Вызов метода объекта является посылкой ему сообщения.
Когда нужно использовать ООП ¶
Вот ситуации, когда, на мой взгляд, ООП даёт преимущества:
Работа с базой данных
Через ООП можно «скрыть» внутреннюю структуру базы от конечного пользователя (в данном случае программиста). Если база будет меняться, то это не приведёт к переписыванию всего проекта
Если вы используете объект, вам неважно, как он хранится в базе данных.
Сложная логика
С помощью ООП можно разбить сложную логику на несколько простых классов. Преимущество в том, что можно создавать универсальный интерфейс и узкоспециализированные классы
Вам не придётся менять код, если потребуется добавить «что-то похожее вон на тот класс».
Большой проект
Ахиллесовой пятой больших проектов является сильное связывание, когда один код вызывается из множества разных частей системы. В последствии такой код становится «неприкасаемым». То есть разработчики боятся в нём что-то менять, потому что неизвестно, какие части проекта после этого отвалятся. Если использовать ООП, то с такой проблемой будет разы проще справиться. Объект можно разбить, сделать фасадом или написать тест. С обычным кодом такое сделать труднее.
Автоматическое тестирование
Поскольку объекты несут в себе конечную логику (имеется в виду, что объекты имеют конечное число свойств и методов), то их можно тестировать. Вызвал один метод, проверил результат, вызвал другой метод, проверил результат и так далее. Автоматические тесты помогают избежать ошибок и за счёт этого улучшают скорость и качество разработки.
История развития
Основа ООП была заложена в начале 1960-х годов. Прорыв в использовании экземпляров и объектов был достигнут в MIT с PDP-1, и первым языком программирования для работы с объектами стал Simula 67. Он был разработан Кристен Найгаард и Оле-Джохан Даль в Норвегии с целью создания симуляторов. Они работали над симуляциями взрыва кораблей и поняли, что могут сгруппировать корабли в различные категории. Каждому типу судна было решено присвоить свой собственный класс, который должен содержать в себе набор уникальных характеристик и данных. Таким образом, Simula не только ввела понятие класса, но и представила рабочую модель.
Термин «объектно-ориентированное программирование» был впервые использован Xerox PARC в языке программирования Smalltalk. Понятие ООП использовалось для обозначения процесса использования объектов в качестве основы для расчетов. Команда разработчиков была вдохновлена проектом Simula 67, но они спроектировали свой язык так, чтобы он был динамичным. В Smalltalk объекты могут быть изменены, созданы или удалены, что отличает его от статических систем, которые обычно используются. Этот язык программирования также был первым, использовавшим концепцию наследования. Именно эта особенность позволила Smalltalk превзойти как Simula 67, так и аналоговые системы программирования.
Simula 67 стала новаторской системой, которая впоследствии стала основой для создания большого количества других языков программирования, в том числе Pascal и Lisp. В 1980-х годах объектно-ориентированное программирование приобрело огромную популярность, и основным фактором в этом стало появление языка С++
Концепция ООП также имела важное значение для разработки графических пользовательских интерфейсов. В качестве одного из самых ярких примеров можно привести структуру Cocoa, существующую в Mac OS X
Общие принципы модели стали применяться во многих современных языках программирования. Некоторые из них — Fortran, BASIC, Pascal. На тот момент многие программы не были разработаны с учетом ООП, что было причиной возникновения некоторых проблем совместимости. “Чистые” объектно-ориентированные языки программирования не обладали многими функциями, необходимыми программистам. Для решения этих проблем ряд исследователей предложили несколько новых языков программирования, созданных на основе принципов ООП с сохранением других, необходимых программистам, функций. Среди наиболее ярких примеров можно выделить Eiffel, Java, .NET. Даже в серьезных веб-разработках используются языки программирования, основанные на принципах ООП — PHP (у нас вы можете пройти курс ООП в PHP), Python, Ruby. По мнению экспертов, в ближайшие несколько десятилетий именно объектно-ориентированный подход будет оставаться основной парадигмой в развитии программирования.
Абстракция
Важным элементом ООП является абстракция. Человеку свойственно представлять сложные явления и объекты, прибегая к абстракции. Например, люди представляют себе автомобиль не в виде набора десятков тысяч отдельных деталей, а в виде совершенно определенного объекта, имеющего свое особое поведение. Эта абстракция позволяет не задумываться о сложности деталей, составляющих автомобиль, скажем, при поездке в магазин. Можно не обращать внимания на подробности работы двигателя, коробки передач и тормозной системы. Вместо этого объект можно использовать как единое целое.
Эффективным средством применения абстракции служат иерархические классификации. Это позволяет упрощать семантику сложных систем, разбивая их на более управляемые части. Внешне автомобиль выглядит единым объектом. Но стоит заглянуть внутрь, как становится ясно, что он состоит из нескольких подсистем: рулевого управления, тормозов, аудиосистемы, привязных ремней, обогревателя, навигатора и т.п. Каждая из этих подсистем, в свою очередь, собрана из более специализированных узлов. Например, аудиосистема состоит из радиоприемника, проигрывателя компакт-дисков и/или аудиокассет. Суть всего сказанного состоит в том, что структуру автомобиля (или любой другой сложной системы) можно описать с помощью иерархических абстракций.
Иерархические абстракции сложных систем можно применять и к компьютерным программам. Благодаря абстракции данные традиционной, ориентированной на процессы, программы можно преобразовать в составляющие ее объекты, а последовательность этапов процесса — в совокупность сообщений, передаваемых между этими объектами. Таким образом, каждый из этих объектов описывает свое особое поведение. Эти объекты можно считать конкретными сущностями, реагирующими на сообщения, предписывающие им вътолнитьконкретное действие. В этом, собственно, и состоит вся суть ООП.
Принципы ООП лежат как в основе языка Java, так и восприятия мира человеком
Важно понимать, каким образом эти принципы реализуются в программах. Как станет ясно в дальнейшем, ООП яаляется еще одной, но более эффективной и естественной методикой создания программ, способных пережить неизбежные изменения, сопровождающие жизненный цикл любого крупного программного проекта, включая зарождение общего замысла, развитие и созревание
Например, при наличии тщательно определенных объектов и ясных, надежных интерфейсов с этими объектам можно безбоязненно и без особого труда извлекать или заменять части старой системы.
Метаобъектный протокол Common Lisp на примере реализации прототипной объектной системы
Введение
Common Lisp, а точнее, его объектная система, CLOS, предоставляет пользователю языка совершенно замечательный механизм, а именно, метаобъектный протокол.
К сожалению, очень часто этот компонент языка незаслуженно остается без должного внимания, и в данной статье я постараюсь это несколько компенсировать.
Вообще, что такое метаобъектный протокол? Очевидно, это слой объектной системы, который, судя по названию, каким-либо образом оперирует над ней самой, и управляет ей.
Для чего он нужен? На самом деле, в зависимости от языка и объектной системы, список применений может быть практически безграничен. Это как добавление коду декларативности(аннотации в Java и аттрибуты в C#), так и разнообразная генерация кода и классов в рантайме(здесь можно вспомнить разнообразные persistance и ORM фреймворки), так и многое другое.
С моей лично точки зрения, лучше всего метаобъектные протоколы себя зарекомендовали со стороны закрепления паттернов проектирования на уровне объектной системы. Такие паттерны, как, скажем, синглтон, которые в языках без достаточно развитого ООП приходится снова и снова реализовывать методом copy-n-paste, в моем любимом Common Lisp создаются буквально из пары десятков строчек кода и переиспользуются в дальнейшем исключительно указанием метакласса.
Тем не менее, в нижеследующем тексте я хочу сосредоточиться на кое-чем более интересном, а именно — на изменении правил работы самой объектной системы, самих ее основ. Именно добавление возможностей подобного изменения и было ключевой целью разработчиков метаобъектного протокола для Common Lisp.
Итак, дальнейший текст будет посвящен созданию прототипной объектной системы, подобной JavaScript, в Common Lisp, с использованием метаобъектного протокола и интеграцией ее в CLOS. Полный код проекта доступен на github.
Основные понятия объектно-ориентированного программирования
Любая функция в программе представляет собой метод для объекта некоторого класса.
Класс должен формироваться в программе естественным образом, как только в ней возникает необходимость описания новых объектов программирования. Каждый новый шаг в разработке алгоритма должен представлять собой разработку нового класса на основе уже существующих.
Вся программа в таком виде представляет собой объект некоторого класса с единственным методом run (выполнить).
Программирование «от класса к классу» включает в себя ряд новых понятий. Основными понятиями ООП являются
- инкапсуляция;
- наследование;
- полиморфизм.
Инкапсуляция данных (от «капсула») – это механизм, который объединяет данные и код, манипулирующий с этими данными, а также защищает и то, и другое от внешнего вмешательства или неправильного использования. В ООП код и данные могут быть объединены вместе (в так называемый «черный ящик») при создании объекта.
Внутри объекта коды и данные могут быть закрытыми или открытыми.
Закрытые коды или данные доступны только для других частей того же самого объекта и, соответственно, недоступны для тех частей программы, которые существуют вне объекта.
Открытые коды и данные, напротив, доступны для всех частей программы, в том числе и для других частей того же самого объекта.Наследование. Новый, или производный класс может быть определен на основе уже имеющегося, или базового класса.
При этом новый класс сохраняет все свойства старого: данные объекта базового класса включаются в данные объекта производного, а методы базового класса могут быть вызваны для объекта производного класса, причем они будут выполняться над данными включенного в него объекта базового класса.
Иначе говоря, новый класс наследует как данные старого класса, так и методы их обработки.
Если объект наследует свои свойства от одного родителя, то говорят об одиночном наследовании. Если объект наследует данные и методы от нескольких базовых классов, то говорят о множественном наследовании.
Пример наследования – определение структуры, отдельный член которой является ранее определенной структурой.Полиморфизм – это свойство, которое позволяет один и тот же идентификатор (одно и то же имя) использовать для решения двух и более схожих, но технически разных задач.
Целью полиморфизма, применительно к ООП, является использование одного имени для задания действий, общих для ряда классов объектов. Такой полиморфизм основывается на возможности включения в данные объекта также и информации о методах их обработки (в виде указателей на функции).
Будучи доступным в некоторой точке программы, объект , даже при отсутствии полной информации о его типе, всегда может корректно вызвать свойственные ему методы.Полиморфная функция – это семейство функций с одним и тем же именем, но выполняющие различные действия в зависимости от условий вызова.
Например, нахождение абсолютной величины в языке Си требует трех разных функций с разными именами:
123
int abs(int);long int labs(long int);double fabs(double);
Язык C++
Роль инкапсуляции
Инкапсуляция — это механизм программирования, объединяющий вместе код
и данные, которыми он манипулирует, исключая как вмешательство извне, так и неправильное использование данных. В объектно-ориентированном языке данные и код
могут быть объединены в совершенно автономный черный ящик. Внутри такого ящика
находятся все необходимые данные и код. Когда код и данные связываются вместе подобным образом, создается объект. Иными словами, объект — это элемент, поддерживающий инкапсуляцию.
Т.е. инкапсуляция представляет собой способности языка скрывать излишние детали реализации от пользователя объекта.
Например, предположим, что используется класс по имени DatabaseReader, который
имеет два главных метода: Open() и Close().
Фиктивный класс DatabaseReader инкапсулирует внутренние детали нахождения,
загрузки, манипуляций и закрытия файла данных. Программистам нравится инкапсуляция, поскольку этот принцип ООП упрощает кодирование. Нет необходимости беспокоиться о многочисленных строках кода, которые работают «за кулисами», чтобы
реализовать функционирование класса DatabaseReader. Все, что потребуется — это
создать экземпляр и отправлять ему соответствующие сообщения (например, «открыть файл по имени AutoLot.mdf, расположенный на диске С:»).
С идеей инкапсуляции программной логики тесно связана идея защиты данных.
В идеале данные состояния объекта должны быть специфицированы с использованием ключевого слова private (или, возможно, protected). Таким образом, внешний мир
должен вежливо попросить, если захочет изменить или получить лежащее в основе значение. Это хороший принцип, поскольку общедоступные элементы данных можно легко повредить (даже нечаянно, а не преднамеренно).
Основной единицей инкапсуляции в C# является класс, который определяет форму
объекта. Он описывает данные, а также код, который будет ими оперировать. В C# описание класса служит для построения объектов, которые являются экземплярами
класса. Следовательно, класс, по существу, представляет собой ряд схематических описаний способа построения объекта.
Код и данные, составляющие вместе класс, называют членами. Данные, определяемые классом, называют полями, или переменными экземпляра. А код, оперирующий
данными, содержится в функциях-членах, самым типичным представителем которых
является метод. В C# метод служит в качестве аналога подпрограммы. (К числу других
функций-членов относятся свойства, события и конструкторы.) Таким образом, методы класса содержат код, воздействующий на поля, определяемые этим классом.
Что не так с процедурным программированием
Процедурное программирование идеально работает в простых программах, где все задачи можно решить, грубо говоря, десятком функций. Функции аккуратно вложены друг в друга, взаимодействуют друг с другом, можно передать данные из одной функции в другую.
Тут приходит продакт-менеджер и говорит: «Хочу, чтобы пользователь точно знал, в чём ошибка при вводе электронного адреса». Теперь вам нужно научить функцию выдавать не просто true — false, а ещё и код ошибки: например, если в адресе опечатка, то код 01, если адрес спамерский — код 02 и так далее. Это несложно реализовать.
Вы залезаете внутрь этой функции и меняете её поведение: теперь она вместо true — false выдаёт код ошибки, а если ошибки нет — пишет «ОК».
И тут ваш код ломается: все десять мест, которые ожидали от проверяльщика true или false, теперь получают «ОК» и из-за этого ломаются.
Теперь вам нужно:
- либо переписывать все функции, чтобы научить их понимать новые ответы проверяльщика адресов;
- либо переделать сам проверяльщик адресов, чтобы он остался совместимым со старыми местами, но в нужном вам месте как-то ещё выдавал коды ошибок;
- либо написать новый проверяльщик, который выдаёт коды ошибок, а в старых местах использовать старый проверяльщик.
Задача, конечно, решаемая за час-другой.
Но теперь представьте, что у вас этих функций — сотни. И изменений в них нужно делать десятки в день. И каждое изменение, как правило, заставляет функции вести себя более сложным образом и выдавать более сложный результат. И каждое изменение в одном месте ломает три других места. В итоге у вас будут нарождаться десятки клонированных функций, в которых вы сначала будете разбираться, а потом уже нет.
Это называется спагетти-код, и для борьбы с ним как раз придумали объектно-ориентированное программирование.