Корреляционно-регрессионный анализ в excel: инструкция выполнения

Содержание:

Особенности корреляционного анализа

Под корреляционным анализом подразумевает методика обработки данных статистики. Для этого определяется теснота связи между несколькими переменными, которые необходимо исследовать.

Нередко корреляционный анализ проводят совместно с регрессионным. В таком случае удается получить более развернутые данные, уменьшив при этом влияние на конечный результат тех или иных посторонних факторов.

Основные ограничения корреляционного анализа заключаются в следующем:

  1. Применяться эта методика может только в тех случаях, когда присутствует достаточный объем наблюдений для исследования. Он должно быть довольно значительным – в 5 или 6 раз выше, чем количество внешних факторов.
  2. Весь объем имеющихся значений и результатов обязательно должен быть подвержен многомерному нормальному распределению. Без этого получить корректный результат исследования просто невозможно.
  3. Исходный объем всех полученных значений первоначально должен быть предельно однородным.
  4. Результат корреляционного анализа не позволяет сделать вывод о том, какая из переменных была триггером изменений в системе.

Несмотря на вышеперечисленные ограничения, свойственные корреляционному анализу, он пользуется значительной популярностью.

Hard Reset средствами самой системы Android

Проблемы применения

В основе корреляционно-регрессионного анализа лежат следующие предположения:

  • Наблюдения считаются независимыми (пятикратное выпадение «орла» никак не влияет на результат следующего подбрасывания монетки).
  • В корреляционном анализе обе переменные рассматриваются как случайные. В регрессионном – только одна (зависимая).
  • При проверке гипотезы должно соблюдаться нормальное распределение. Изменение зависимой переменной должно быть одинаковым для каждой величины на оси абсцисс.
  • Корреляционная диаграмма – это только первая проверка гипотезы о взаимоотношениях между двумя рядами параметров, а не конечный результат анализа.

9.1.2. Проверка статистических гипотез о связи переменных

Выборочный коэффициент корреляции оценивает подразумеваемую исследователем реальную связь между переменными. Как и в случае оценки среднего значения, нас интересуют два вопроса: (1) Насколько сильна связь между переменными; (2) Насколько надежна наша оценка. Сила связи между переменными по всей генеральной совокупности существует объективно. Если ее измерять корреляцией, то она будет выражаться числом от −1 до 1. Выборочная корреляция этих переменных будет колебаться вокруг истинного показателя силы связи. Трудность состоит в том, что, получив выборочную корреляцию, мы не можем знать, ни насколько она отклоняется от истинного значения, ни даже в какую сторону. В случае корреляции оценка обычно выражается в терминах значимости.

Проделаем небольшое упражнение.

Упражнение 9.1.2(1). Возьмите две симметричные монеты достоинством в один рубль и один евро. Проведите серию четырех подбрасываний пары монет и запишите результаты в виде ​\( (x_1, y_1),\dots,(x_4, y_4) \)​ , полагая

​\( x_i=0 \)​, если рубль выпал цифрой;

​\( x_i=1 \), если рубль выпал гербом;

​\( y_i=0 \), если евро выпал цифрой;

​\( y_i=1 \), если евро выпал гербом.

Подсчитайте коэффициент корреляции Пирсона. Истинная корреляция между результатами двух монет равна, разумеется, нулю. Повторите процедуру несколько раз и убедитесь, что нулевое значение выборочного коэффициента корреляции выпадает примерно один раз из трех. При многократном повторении опыта можно убедиться, что его результат имеет некоторое распределение, симметричное относительно нуля. Это распределение зависит от объема выборки n: чем больше n, тем меньше дисперсия распределения, тем ближе к нулю ее вероятные значения.

В таблице 9.1.2(2) приведены двухсторонние квантили распределения выборочного коэффициента корреляции по Пирсону для ​\( n=10 \)​. Они рассчитаны для выборок, полученных испытаниями двух нормально распределенных случайных величин, теоретическая корреляция между которыми равна нулю. Дихотомический результат подбрасывания монеты не распределен нормально, однако некоторое представление о возможных результатах наших испытаний табличный квантиль все же дает.

Таблица 9.1.2(2) Двусторонние квантили распределения коэффициента Пирсона для n = 10

​\( \alpha \)​ 0.05 0.025 0.01 0.005
​\( r_\alpha(10) \)​ 0.497 0.576 0.658 0.709

Обычно при исследовании связи переменных статистической гипотезой ​\( H_0 \)​ будет гипотеза об отсутствии связи, т.е. о независимости переменных. Альтернативная гипотеза \( H_1 \)​ (т.е. гипотеза, к которой мы склоняемся, получив большие по модулю значения выборочной корреляции) будет утверждать только наличие связи . Можно оценить значимость относительно данного результата (полученной парной выборки) гипотез о других значениях теоретической корреляции, но это требует некоторых дополнительных усилий (см. подпараграф ). Если истинна гипотеза \( H_0 \)​, то выборочный коэффициент корреляции будет принимать значения, более или менее близкие к нулю. Если выборочная корреляция принимает достаточно большое по модулю значение, которому соответствует значимость, измеряемая маленьким числом, то мы склоняемся к гипотезе \( H_1 \)​ о наличии связи, но без указания точного значения теоретической корреляции.

Можно заметить, что если верна гипотеза  об отсутствии зависимости между случайными величинами, то выборочный коэффициент при \( n=10 \) может принимать тем не менее довольно большие значения, так что уровень значимости 0.05 для принятия гипотезы о зависимости случайных величин требует, чтобы выборочный коэффициент корреляции достигал почти 0.5 (см. ). В связи с этим надо иметь в виду, что даже выборочная корреляция, например 0.6, вполне может согласовываться с истинной корреляцией, равной 0.2 .

Вычисление коэффициента посредством мастера функций

Предположим, что требуется установить связь между затратами на рекламу и объемом продаж какой-либо продукции. Для этого будем использовать коэффициент корреляции в Excel.

Порядок действий:

  1. Кликнуть по ячейке, в которой должен появиться результат.
  2. Нажать кнопку «Вставить формулу».
  3. В появившемся окне выбрать категорию «Полный алфавитный перечень».
  4. Найти и активировать функцию «КОРРЕЛ».
  5. Кликнуть «ОК».
  6. В открывшемся окне аргументов поставить курсор в поле «Массив 1», выделить первый столбец с данными.
  7. Поставить курсор в поле «Массив 2», выделить второй столбец из таблицы.
  8. Кликнуть «ОК».

В выделенной ячейке появляется результат вычислений корреляции в Excel.

Расчёт с помощью пакета анализа

Прежде чем воспользоваться инструментом корреляционного анализа, его нужно активировать. Для этого необходимо выполнить следующие действия:

  1. Выполнить действия «Файл» — «Сведения» — «Параметры».
  2. В появившемся окне перейти в раздел «Надстройки». В нижней части окна в выпадающем списке выбрать «Надстройки Excel». Нажать кнопку «Перейти».
  3. В открывшемся окне «Надстройки» следует о и нажать «ОК»

Чтобы воспользоваться пакетом, следует:

  1. На панели задач активировать вкладку «Данные».
  2. Нажать кнопку «Анализ данных».
  3. В новом окне выделить строку «Корреляция» и нажать «ОК». Появится окно с параметрами.
  4. Для выбора входного интервала необходимо установить курсор в соответствующее поле и выделить сразу оба столбца.
  5. Параметр группировки следует о. Вывод результатов возможен в указанное место, на новый лист или в новую книгу.
  6. Следует отметить соответствующее поле.

Работа со сводными таблицами в MS Excel

После указание всех параметров следует нажать «ОК».

Значение получилось тем же, что и в первом случае.

Поле корреляции (диаграмма рассеяния)

Корреляционное поле — это графическое отображение исходных данных. По расположению точек можно определить наличие зависимости и ее характер.

В редакторе Excel построение выполняется с помощью инструмента «Диаграмма»:

  1. Выделить столбцы с данными.
  2. Кликнуть «Вставка» — «Точечная» — «Точечная с маркерами».
  • Результат построения корреляционной матрицы.
  • По расположению точек на диаграмме можно сделать вывод о том, что прослеживается сильная положительная корреляционная зависимость между величиной затрат на маркетинг и объемом продаж.
  • Для того, чтобы использовать диаграмму в практических целях, можно добавить линию тренда и уравнение. Для этого нужно выполнить следующие действия:
  1. Кликнуть правой кнопкой мыши на любой точке диаграммы.
  2. В контекстном меню выбрать «добавить линию тренда».
  3. Настроить параметры линии тренда (можно оставить по умолчанию).
  4. Нажать кнопку «закрыть».

Примеры использование корреляционного анализа

Как уже отмечалось выше, вычислить соотношение можно между любыми числовыми величинами. Обнаруженная высокая корреляция позволяет прогнозировать протекание каких-либо процессов в научных исследованиях, бизнесе, общественной жизни.

В рассмотренном выше примере была установлена высокая положительная корреляция между затратами на рекламу и объемом продаж определенного вида продукции. Кроме того, была определена формула, связывающая эти два показателя. Это исследование позволяет руководителю предприятия грамотно спланировать затраты на рекламу, с учетом необходимого размера продаж.

Другие примеры использования коэффициента корреляции:

Что делать, если лист или книга в Excel защищены паролем – как снять защиту

Редактор электронных таблиц Microsoft Excel является удобным инструментом для вычисления и наглядного представления результатов вычисления коэффициента корреляции.

Множественная корреляция, её коэффициент

Множественная корреляция — это вероятностная зависимость между одной величиной с
одной стороны, и одновременно несколькими другими ,
с другой стороны.
То есть, в отличие от парной корреляции, при которой
на изменения зависимой (результирующей) переменной влияет одна независимая (объясняющая) переменная,
при множественной корреляции независимых (объясняющих) переменных две или больше.

Цель корреляционного анализа в случае множественной корреляции — установить, есть ли зависимость между
переменными и насколько тесно связаны между собой зависимая переменная, с одной стороны, и независимые
переменные, с другой стороны, и зависят ли друг от друга независимые переменные .

Для того чтобы можно было бы применять модель множественной линейной регрессии, прежде, при анализе
множественной корреляции должны быть установлены следующие факты:

  • зависимая переменная тесно зависит от независимых переменных (тесноту связи, как и в случае
    парной корреляции, показывают );
  • нет тесной зависимости между независимыми переменными.

Коэффициент множественной корреляции в случае двухфакторной корреляции рассчитывается по следующей формуле:

.

Коэффициенты множественной корреляции между зависимой переменной
и независимыми переменными
записываются в корреляционную матрицу:

Пример 1. Аналитик предприятия решил проверить факторы, которые
влияют на размер заработной платы сотрудников . Предварительно
в качестве объясняющих факторов выбраны: возраст сотрудника ,
стаж работы , оценка теста для приёма
на работу и число подчинённых
сотрудников . Случайно были выбраны
200 сотрудников, данные которых были обобщены. В результате была получена следующая корреляционная матрица:

1
-0,27 1
0,78 -0,63 1
-0,83 0,47 -0,89 1
0,65 -0,46 0,17 -0,21 1

Установить, какие переменные можно выбрать как независимые, для того, чтобы далее
можно было бы строить модель множественной регрессии.

Решение.

Корреляционная матрица показывает, что между переменными:

  • и — слабая линейная связь: -0,27;
  • и — средне тесная положительная линейная связь: 0,78;
  • и — тесная отрицательная линейная связь: -0,83;
  • и — средне тесная линейная связь: 0,65;
  • и — тесная отрицательная линейная связь: -0,89;
  • и — слабая линейная связь: 0,17;
  • и — слабая линейная связь: -0,21.

Таким образом, не следует включать в число переменных, влияющих на размер заработной
платы возраст сотрудников . Так как
между независимыми переменными и
установлена тесная отрицательная связь,
не включаем в число переменных, влияющих на размер заработной платы стаж работы .
Выбираем в качестве независимых переменных оценку теста для приёма
на работу и число подчинённых
сотрудников .

Чтобы установить тесноту связи между заработной платой сотрудников ,
с одной стороны, и оценкой теста для приёма
на работу и числом подчинённых
сотрудников , с другой стороны,
вычислим коэффициент множественной (двухфакторной) корреляции:

Таким образом, между заработной платой сотрудников, с одной стороны, и
оценкой теста для приёма на работу и числом подчинённых, с другой стороны, существует тесная линейная
связь.

Как показывает пример выше, в исследованиях поведения человека,
как и во многих других направлениях, важно установить, какие факторы из многих действительно влияют на
результат при учете влияния всех остальных факторов

§ 8. Методика вычисления выборочного коэффициента корреляции

Пусть требуется
по данным корреляционной таблицы
вычислить выборочный коэффициент
корреляции. Можно значительно упростить
расчет, если перейти к условным вариантам
(при этом величина rв
не изменится)

ui=(xi—С1)/h1
и υj=(yj—С2)/h2.

В этом случае
выборочный коэффициент корреляции
вычисляют по формуле

.

Величины u,
υ

и
можно найти методом произведений (см.
гл. XVII, § 4), а при малом числе данных—
непосредственно исходя из определений
этих величин. Остается указать способ
вычисления ,
где —
частота пары
условных вариант (u,
υ).

Можно доказать,
что справедливы формулы (см. пояснение
в конце параграфа):

,
где
,

,
где
.

Для контроля
целесообразно выполнить расчеты по
обеим формулам и сравнить результаты;
их совпадение свидетельствует о
правильности вычислений.

Покажем на примере,
как пользоваться приведенными формулами.

Пример 1.
Вычислить ^ «по»» П0
данным корреляционной табл. 14.

Таблица 14

Y

X

ny

10

20

30

40

50

60

15

5

7

12

25

20

23

43

35

30

47

2

79

45

10

11

20

6

47

55

9

7

3

19

nx

5

27

63

67

29

9

n=200

Решение. Перейдем
к условным вариантам: ui=(xi—С1)/h1
= = (xi
—40)/10 (в качестве
ложного нуля С1
взята варианта х=40.
расположенная
примерно в середине вариационного ряда;
шаг h1
равен разности
между двумя соседними вариантами: 20—10
= 10) и υj=(yj—С2)/h2
= (yj
—35)/10 (в качестве
ложного нуля С2
взята варианта у =35, расположенная в
середине вариационного ряда; шаг h2
равен разности между двумя соседними
вариантами: 25—15=10).

Составим
корреляционную таблицу в условных
вариантах. Практически это делают так:
в первом столбце вместо ложного нуля
С2
(варианты 35) пишут 0; над нулем последовательно
записывают —1,
—2; под нулем пишут 1, 2. В первой строке
вместо ложного нуля С1
(варианты 40) пишут 0; слева от нуля
последовательно записывают —1, —2, —3;
справа от нуля пишут 1, 2. Все остальные
данные переписывают из первоначальной
корреляционной таблицы. В итоге получим
корреляционную табл. 15 в условных
вариантах.

Таблица
15

υ

u

nυ

-3

-2

— 1

1

2

—2

5

7

12

—1

20

23

43

30

47

2

79

1

10

11

20

6

47

2

9

7

3

19

nu

5

27

63

67

29

9

n =
200

Теперь для вычисления
искомой суммы составим
расчетную табл. 16. Пояснения к составлению
табл. 16:

1. В каждой клетке,
в которой частота n
≠ 0, записывают
в правом верхнем углу произведение
частоты n
на варианту u.
Например, в
правых верхних углах клеток первой
строки записаны произведения: 5·(—3) =
—15; 7·(—2) = —14.

2. Складывают все
числа, помещенные в правых верхних углах
клеток одной строки и их сумму записывают
в клетку этой же строки столбца u.
Например, для первой строки
U
== —15+(—14)= —29.

3. Умножают варианту
υ
на U
и полученное произведение заци-сывают
в последнюю клетку той же строки, т. е.
в клетку столбца υU.
Например,
в первой строке таблицы υ
= —2,
U
= —29; следовательно, υU
= (—2)·(—29) = 58.

4. Наконец, сложив
все числа столбца υU,
получают сумму
,
которая равна искомой сумме .
Например, для табл.
16 имеем
=
169; следовательно, искомая сумма =
169.

Таблица 16

υ

u

ч

1

U=

=

υU

-3

-2

—1

1

2

-2

—15

5

-10

-14

7

-14

—29

58

-1

—40

20

-20

—23

23

—23

-63

63

-30

30

47

2

2

—28

1

—10

10

10

11

11

20

20

20

12

6

6

22

22

2

9

18

7

7

14

6

3

6

13

26

V= =

—10

-34

—13

29

34

12

=
=169

uV

30

68

13

34

«

==169

Контроль

Для контроля
аналогичные вычисления производят по
столбцам:

произведения nυ
записывают в левый нижний угол клетки,
содержащей частоту nυ
≠ 0; все числа,
помещенные в левых нижних углах клеток
одного столбца, складывают и их сумму
записывают в строку V;
далее умножают каждую варианту u
на V
и результат записывают в клетках
последней строки.

Наконец, сложив
все числа последней строки, получают
сумму
,
которая также равна искомой сумме .
Например, для табл.
16 имеем
=
169; следовательно,= 169.

Теперь, когда мы
научились вычислять ,
приведем пример на отыскание выборочного
коэффициента корреляции.

Условия использования метода

Результативные факторы зависят от одного до нескольких факторов. Метод корреляционного анализа может применяться в том случае, если имеется большое количество наблюдений о величине результативных и факторных показателей (факторов), при этом исследуемые факторы должны быть количественными и отражаться в конкретных источниках. Первое может определяться нормальным законом — в этом случае результатом корреляционного анализа выступают коэффициенты корреляции Пирсона, либо, в случае, если признаки не подчиняются этому закону, используется коэффициент ранговой корреляции Спирмена.

Критерии и методы

КРИТЕРИЙ СПИРМЕНА

Коэффициент ранговой корреляции Спирмена – это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.

Чарльз Эдвард Спирмен

1. История разработки коэффициента ранговой корреляции

Данный критерий был разработан и предложен для проведения корреляционного анализа в 1904 году Чарльзом Эдвардом Спирменом, английским психологом, профессором Лондонского и Честерфилдского университетов.

2. Для чего используется коэффициент Спирмена?

Коэффициент ранговой корреляции Спирмена используется для выявления и оценки тесноты связи между двумя рядами сопоставляемых количественных показателей. В том случае, если ранги показателей, упорядоченных по степени возрастания или убывания, в большинстве случаев совпадают (большему значению одного показателя соответствует большее значение другого показателя — например, при сопоставлении роста пациента и его массы тела), делается вывод о наличии прямой корреляционной связи. Если ранги показателей имеют противоположную направленность (большему значению одного показателя соответствует меньшее значение другого — например, при сопоставлении возраста и частоты сердечных сокращений), то говорят об обратной связи между показателями.

  1. Коэффициент корреляции Спирмена обладает следующими свойствами:
  2. Коэффициент корреляции может принимать значения от минус единицы до единицы, причем при rs=1 имеет место строго прямая связь, а при rs= -1 – строго обратная связь.
  3. Если коэффициент корреляции отрицательный, то имеет место обратная связь, если положительный, то – прямая связь.
  4. Если коэффициент корреляции равен нулю, то связь между величинами практически отсутствует.
  5. Чем ближе модуль коэффициента корреляции к единице, тем более сильной является связь между измеряемыми величинами.

3. В каких случаях можно использовать коэффициент Спирмена?

В связи с тем, что коэффициент является методом непараметрического анализа, проверка на нормальность распределения не требуется.

Сопоставляемые показатели могут быть измерены как в непрерывной шкале (например, число эритроцитов в 1 мкл крови), так и в порядковой (например, баллы экспертной оценки от 1 до 5).

Эффективность и качество оценки методом Спирмена снижается, если разница между различными значениями какой-либо из измеряемых величин достаточно велика. Не рекомендуется использовать коэффициент Спирмена, если имеет место неравномерное распределение значений измеряемой величины.

4. Как рассчитать коэффициент Спирмена?

Расчет коэффициента ранговой корреляции Спирмена включает следующие этапы:

  1. Сопоставить каждому из признаков их порядковый номер (ранг) по возрастанию или убыванию.
  2. Определить разности рангов каждой пары сопоставляемых значений (d).
  3. Возвести в квадрат каждую разность и суммировать полученные результаты.
  4. Вычислить коэффициент корреляции рангов по формуле:

Определить статистическую значимость коэффициента при помощи t-критерия, рассчитанного по следующей формуле:

5. Как интерпретировать значение коэффициента Спирмена?

При использовании коэффициента ранговой корреляции условно оценивают тесноту связи между признаками, считая значения коэффициента меньше 0,3 — признаком слабой тесноты связи; значения более 0,3, но менее 0,7 — признаком умеренной тесноты связи, а значения 0,7 и более — признаком высокой тесноты связи.

Также для оценки тесноты связи может использоваться шкала Чеддока:

xy
Теснота (сила) корреляционной связи
менее 0.3
слабая
от 0.3 до 0.5
умеренная
от 0.5 до 0.7
заметная
от 0.7 до 0.9
высокая
более 0.9
весьма высокая

Статистическая значимость полученного коэффициента оценивается при помощи t-критерия Стьюдента. Если расчитанное значение t-критерия меньше табличного при заданном числе степеней свободы, статистическая значимость наблюдаемой взаимосвязи — отсутствует. Если больше, то корреляционная связь считается статистически значимой.

Реальные причины корреляции и возможные гипотезы

Курс доллара и стоимость нефти отрицательно коррелируют. Можем выдвинуть гипотезу: повышение цен на черное золото вызывает падение стоимости американской валюты. Но почему так происходит? Откуда взялась связь между этими явлениями?

Возможно, дело в том, что США – крупнейший потребитель нефти в мире. Каждый день они импортируют около 7,2 миллиона баррелей. Снижение цены на черное золото – хорошо для американской экономики, ведь позволяет тратить меньше денег. Следовательно, доллар растет.

Например, мы выяснили, что существует отрицательная взаимосвязь между доходом персонала и его эффективностью в работе. Наша гипотеза: «Лентяи и бездельники получают больше, чем ответственные сотрудники». Тогда мы пересмотрим систему мотивации и избавимся от бесполезных людей.

Согласно статистике, чем больше пожарных участвует в тушении огня, тем существенней размер ущерба. Какую гипотезу можем сделать отсюда? Пожарные приносят вред, давайте сократим их! Но если разобраться, то настоящая причина повреждения – это огонь. А увеличение числа лиц, задействованных в его тушении, – следствие масштаба пожара.

Наша вселенная бесконечна, а значит всегда можно найти несколько переменных, которые будут коррелировать между собой, несмотря на полное отсутствие причинно-следственных связей. Даже самое буйное воображение не сможет объяснить, что объединяет сыр и одеяло-убийцу:

Более подробно на эту тему смотрите в видео:

Корреляция и диверсификация

Как знания о корреляции активов могут помочь лучше вкладывать деньги? Думаю, вы все хорошо знакомы с золотым правилом инвестора — не клади все яйца в одну корзину. Речь, естественно, идёт о диверсификации инвестиционных активов в портфеле. Корреляция и диверсификация неразрывно связаны, что понятно даже из названия — английское diversify означает «разнообразить», а как коэффициент корреляции как раз показывает схожесть или различие двух явлений.

Другими словами, инвестировать в финансовые инструменты с высокой корреляцией не очень хорошо. Почему? Все просто — похожие активы плохо диверсифицируются. Вот пример портфеля двух активов с корреляцией +1:

Как видите, график портфеля во всех деталях повторяет графики каждого из активов — рост и падение обоих активов синхронны. Диверсификация в теории должна снижать инвестиционные риски за счёт того, что убытки одного актива перекрываются за счёт прибыли другого, но здесь этого не происходит совершенно. Все показатели просто усредняются:

Портфель даёт небольшой выигрыш в снижении рисков — но только по сравнению с более доходным Активом 1. А так, никаких преимуществ по сути нет, нам лучше просто вложить все деньги в Актив 1 и не париться.

А вот пример портфеля двух активов с корреляцией близкой к 0:

Где-то графики следуют друг за другом, где-то в противоположных направлениях, какой-либо однозначной связи не наблюдается. И вот здесь диверсификация уже работает:

Мы видим заметное снижение СКО, а значит портфель будет менее волатильным и более стабильно расти. Также видим небольшое снижение максимальной просадки, особенно если сравнивать с Активом 1. Инвестиционные инструменты без корреляции достаточно часто встречаются и из них имеет смысл составлять портфель.

Впрочем, это не предел. Наиболее эффективный инвестиционный портфель можно получить, используя активы с корреляцией -1:

Уже знакомое вам «зеркало» позволяет довести показатели риска портфеля до минимальных:

Несмотря на то, что каждый из активов обладает определенным риском, портфель получился фактически безрисковым. Какая-то магия, не правда ли? Очень жаль, но на практике такого не бывает, иначе инвестирование было бы слишком лёгким занятием.

Что такое корреляционно-регрессионный анализ (КРА) предприятия?

Корреляционно-регрессионный анализ (КРА) на предприятиях используется для выявления связей между несколькими факторами хозяйственной деятельности и оценки степени взаимозависимости выбранных для анализа критериев. Методика использует два алгоритма действий:

  1. Корреляция, которая направлена на построение моделей связей.
  2. Регрессия, используемая для прогнозирования событий на основе наиболее подходящей для ситуации модели связей.

Анализ проводится в несколько шагов:

  • постановка задач проведения исследования;
  • массовый сбор информации: систематизация статистических данных по конкретным показателям деятельности предприятия в динамике за несколько периодов;
  • этап создания модели связей;
  • анализ функционирования модели, оценка ее эффективности.

Для проведения КРА необходимо использовать показатели в едином измерителе, все они должны иметь числовое значение.

ОБРАТИТЕ ВНИМАНИЕ! Для достоверности данных и работоспособности модели сведения должны быть собраны за длительный отрезок времени. Для полноты анализа надо устранить количественные ограничения на показатели модели, должно соблюдаться условие постоянной временной и территориальной структуры рассматриваемой совокупности элементов

Для полноты анализа надо устранить количественные ограничения на показатели модели, должно соблюдаться условие постоянной временной и территориальной структуры рассматриваемой совокупности элементов.

Какие существуют особенности анализа показателей финансово-хозяйственной деятельности экономического субъекта в рамках обязательного аудита?

Для чего нужна подпись

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector