Библиотека постов medstatistic об анализе медицинских данных

Содержание:

§ 8. Методика вычисления выборочного коэффициента корреляции

Пусть требуется
по данным корреляционной таблицы
вычислить выборочный коэффициент
корреляции. Можно значительно упростить
расчет, если перейти к условным вариантам
(при этом величина rв
не изменится)

ui=(xi—С1)/h1
и υj=(yj—С2)/h2.

В этом случае
выборочный коэффициент корреляции
вычисляют по формуле

.

Величины u,
υ

и
можно найти методом произведений (см.
гл. XVII, § 4), а при малом числе данных—
непосредственно исходя из определений
этих величин. Остается указать способ
вычисления ,
где —
частота пары
условных вариант (u,
υ).

Можно доказать,
что справедливы формулы (см. пояснение
в конце параграфа):

,
где
,

,
где
.

Для контроля
целесообразно выполнить расчеты по
обеим формулам и сравнить результаты;
их совпадение свидетельствует о
правильности вычислений.

Покажем на примере,
как пользоваться приведенными формулами.

Пример 1.
Вычислить ^ «по»» П0
данным корреляционной табл. 14.

Таблица 14

Y

X

ny

10

20

30

40

50

60

15

5

7

12

25

20

23

43

35

30

47

2

79

45

10

11

20

6

47

55

9

7

3

19

nx

5

27

63

67

29

9

n=200

Решение. Перейдем
к условным вариантам: ui=(xi—С1)/h1
= = (xi
—40)/10 (в качестве
ложного нуля С1
взята варианта х=40.
расположенная
примерно в середине вариационного ряда;
шаг h1
равен разности
между двумя соседними вариантами: 20—10
= 10) и υj=(yj—С2)/h2
= (yj
—35)/10 (в качестве
ложного нуля С2
взята варианта у =35, расположенная в
середине вариационного ряда; шаг h2
равен разности между двумя соседними
вариантами: 25—15=10).

Составим
корреляционную таблицу в условных
вариантах. Практически это делают так:
в первом столбце вместо ложного нуля
С2
(варианты 35) пишут 0; над нулем последовательно
записывают —1,
—2; под нулем пишут 1, 2. В первой строке
вместо ложного нуля С1
(варианты 40) пишут 0; слева от нуля
последовательно записывают —1, —2, —3;
справа от нуля пишут 1, 2. Все остальные
данные переписывают из первоначальной
корреляционной таблицы. В итоге получим
корреляционную табл. 15 в условных
вариантах.

Таблица
15

υ

u

nυ

-3

-2

— 1

1

2

—2

5

7

12

—1

20

23

43

30

47

2

79

1

10

11

20

6

47

2

9

7

3

19

nu

5

27

63

67

29

9

n =
200

Теперь для вычисления
искомой суммы составим
расчетную табл. 16. Пояснения к составлению
табл. 16:

1. В каждой клетке,
в которой частота n
≠ 0, записывают
в правом верхнем углу произведение
частоты n
на варианту u.
Например, в
правых верхних углах клеток первой
строки записаны произведения: 5·(—3) =
—15; 7·(—2) = —14.

2. Складывают все
числа, помещенные в правых верхних углах
клеток одной строки и их сумму записывают
в клетку этой же строки столбца u.
Например, для первой строки
U
== —15+(—14)= —29.

3. Умножают варианту
υ
на U
и полученное произведение заци-сывают
в последнюю клетку той же строки, т. е.
в клетку столбца υU.
Например,
в первой строке таблицы υ
= —2,
U
= —29; следовательно, υU
= (—2)·(—29) = 58.

4. Наконец, сложив
все числа столбца υU,
получают сумму
,
которая равна искомой сумме .
Например, для табл.
16 имеем
=
169; следовательно, искомая сумма =
169.

Таблица 16

υ

u

ч

1

U=

=

υU

-3

-2

—1

1

2

-2

—15

5

-10

-14

7

-14

—29

58

-1

—40

20

-20

—23

23

—23

-63

63

-30

30

47

2

2

—28

1

—10

10

10

11

11

20

20

20

12

6

6

22

22

2

9

18

7

7

14

6

3

6

13

26

V= =

—10

-34

—13

29

34

12

=
=169

uV

30

68

13

34

«

==169

Контроль

Для контроля
аналогичные вычисления производят по
столбцам:

произведения nυ
записывают в левый нижний угол клетки,
содержащей частоту nυ
≠ 0; все числа,
помещенные в левых нижних углах клеток
одного столбца, складывают и их сумму
записывают в строку V;
далее умножают каждую варианту u
на V
и результат записывают в клетках
последней строки.

Наконец, сложив
все числа последней строки, получают
сумму
,
которая также равна искомой сумме .
Например, для табл.
16 имеем
=
169; следовательно,= 169.

Теперь, когда мы
научились вычислять ,
приведем пример на отыскание выборочного
коэффициента корреляции.

Задачи, виды и показатели корреляционно-регрессионного анализа

Задачи КРА заключаются в:

  • идентификации наиболее значимых факторов влияния на конкретный показатель деятельности предприятия;
  • количественном измерении тесноты выявленных связей между показателями;
  • определении неизвестных причин возникновения связей;
  • всесторонней оценке факторов, которые признаны наиболее важными для рассматриваемого показателя;
  • выведении формулы уравнения регрессии;
  • составлении прогноза возможного результата деятельности при изменении ключевых связанных факторов с учетом возможного влияния других факторных признаков.

КРА подразумевает использование нескольких видов корреляционных и регрессионных методов. Зависимости выявляются при помощи корреляций таких типов:

  • парная, если связь устанавливается с участием двух признаков;
  • частная – взаимосвязь оценивается между искомым показателем и одним из ключевых факторов, при этом условием задается постоянное значение комплекса других факторов (то есть числовое выражение всех остальных факторов в любых ситуациях будет приниматься за определенную неизменную величину);
  • множественная – основу исследования составляет влияние на показатель деятельности не одного фактора, а сразу нескольких критериев (двух и более).

СПРАВОЧНО! Выявленные показатели степени тесноты связей отражаются коэффициентом корреляции.

На выбор коэффициента влияет шкала измерения признаков:

  1. Шкала номинальная, которая предназначена для приведения описательных характеристик объектов.
  2. Шкала ординальная нужна для вычисления степени упорядоченности объектов в привязке к одному и более признакам.
  3. Шкала количественная используется для отражения количественных значений показателей.

Регрессионный анализ пользуется методом наименьших квадратов. Регрессия может быть линейной и множественной. Линейный тип предполагает модель из связей между двумя параметрами. Например, при наличии таких двух критериев, как урожайность клубники и полив, понятно, что именно объем поступающей влаги будет влиять на объем выращенной и собранной клубники. Если полив будет чрезмерным, то урожай пропадет. Урожайность же клубники никак не может воздействовать на систему полива.

Множественная регрессия учитывает более двух факторов одновременно. В случае с клубникой при оценке ее урожайности могут использоваться факторы полива, плодородности почвы, температурного режима, отсутствия слизняков, сортовые особенности, своевременность внесения удобрений. Все перечисленные показатели в совокупности оказывают комплексное воздействие на искомое значение – урожайность ягод.

Система показателей анализа формируется критериями классификации. Например, при экстенсивном типе развития бизнеса в качестве показателей могут выступать такие факторы:

  • количество сотрудников;
  • число заключенных договоров за отчетный период;
  • посевные площади;
  • прирост поголовья скота;
  • расширение дилерской сети;
  • объем основных фондов.

При интенсивном типе развития могут применяться следующие показатели:

  • производительность труда;
  • рентабельность;
  • урожайность;
  • фондоотдача;
  • ликвидность;
  • средний объем поставок в отчетном периоде по одному договору.

Распространенные заблуждения

Корреляция и причинность

Традиционное изречение, что « корреляция не подразумевает причинно-следственную связь », означает, что корреляция не может использоваться сама по себе для вывода причинной связи между переменными. Это изречение не следует понимать как то, что корреляции не могут указывать на возможное существование причинно-следственных связей. Однако причины, лежащие в основе корреляции, если таковые имеются, могут быть косвенными и неизвестными, а высокие корреляции также пересекаются с отношениями идентичности ( тавтологиями ), где не существует причинного процесса. Следовательно, корреляция между двумя переменными не является достаточным условием для установления причинной связи (в любом направлении).

Корреляция между возрастом и ростом у детей довольно прозрачна с точки зрения причинно-следственной связи, но корреляция между настроением и здоровьем людей менее очевидна. Приводит ли улучшение настроения к улучшению здоровья, или хорошее здоровье приводит к хорошему настроению, или и то, и другое? Или в основе обоих лежит какой-то другой фактор? Другими словами, корреляция может рассматриваться как свидетельство возможной причинной связи, но не может указывать на то, какой может быть причинная связь, если таковая имеется.

Простые линейные корреляции

Четыре набора данных с одинаковой корреляцией 0,816

Коэффициент корреляции Пирсона указывает на силу линейной связи между двумя переменными, но его значение, как правило, не полностью характеризует их взаимосвязь. В частности, если условное среднее из дано , обозначается , не является линейным в , коэффициент корреляции будет не в полной мере определить форму .
Y{\ displaystyle Y}Икс{\ displaystyle X}E⁡(Y∣Икс){\ displaystyle \ operatorname {E} (Y \ mid X)}Икс{\ displaystyle X}E⁡(Y∣Икс){\ displaystyle \ operatorname {E} (Y \ mid X)}

Прилегающие изображение показывает разброс участков из квартет энскомбы , набор из четырех различных пар переменных , созданный Фрэнсис Анскомбами . Четыре переменные имеют одинаковое среднее значение (7,5), дисперсию (4,12), корреляцию (0,816) и линию регрессии ( y  = 3 + 0,5 x ). Однако, как видно на графиках, распределение переменных сильно отличается. Первый (вверху слева), кажется, распределен нормально и соответствует тому, что можно было бы ожидать, рассматривая две коррелированные переменные и следуя предположению о нормальности. Второй (вверху справа) не распространяется нормально; Хотя можно наблюдать очевидную связь между двумя переменными, она не является линейной. В этом случае коэффициент корреляции Пирсона не указывает на то, что существует точная функциональная связь: только степень, в которой эта связь может быть аппроксимирована линейной зависимостью. В третьем случае (внизу слева) линейная зависимость идеальна, за исключением одного выброса, который оказывает достаточное влияние, чтобы снизить коэффициент корреляции с 1 до 0,816. Наконец, четвертый пример (внизу справа) показывает другой пример, когда одного выброса достаточно для получения высокого коэффициента корреляции, даже если связь между двумя переменными не является линейной.
у{\ displaystyle y}

Эти примеры показывают, что коэффициент корреляции, как сводная статистика, не может заменить визуальный анализ данных. Иногда говорят, что примеры демонстрируют, что корреляция Пирсона предполагает, что данные следуют нормальному распределению , но это неверно.

Коэффициенты ранговой корреляции

Коэффициенты ранговой корреляции , такие как коэффициент ранговой корреляции Спирмена и коэффициент ранговой корреляции Кендалла (τ), измеряют степень, в которой по мере увеличения одной переменной наблюдается тенденция к увеличению другой переменной, не требуя, чтобы это увеличение было представлено линейной зависимостью. Если по мере увеличения одной переменной другая уменьшается , коэффициенты ранговой корреляции будут отрицательными. Обычно эти коэффициенты ранговой корреляции рассматриваются как альтернативы коэффициенту Пирсона, используемому либо для уменьшения объема вычислений, либо для того, чтобы сделать коэффициент менее чувствительным к ненормальности в распределениях. Однако у этого взгляда мало математического обоснования, поскольку коэффициенты ранговой корреляции измеряют другой тип взаимосвязи, чем коэффициент корреляции продукта-момента Пирсона , и лучше всего рассматриваются как меры другого типа ассоциации, а не как альтернативный показатель совокупности. коэффициент корреляции.

Чтобы проиллюстрировать природу ранговой корреляции и ее отличие от линейной корреляции, рассмотрим следующие четыре пары чисел :
(Икс,у){\ Displaystyle (х, у)}

(0, 1), (10, 100), (101, 500), (102, 2000).

По мере того, как мы переходим от каждой пары к следующей, увеличивается, и то же самое . Это соотношение является совершенным, в том смысле , что увеличение будет всегда сопровождается увеличением . Это означает, что у нас есть идеальная ранговая корреляция, и коэффициенты корреляции Спирмена и Кендалла равны 1, тогда как в этом примере коэффициент корреляции произведение-момент Пирсона равен 0,7544, что указывает на то, что точки далеко не лежат на прямой линии. Таким же образом, если всегда уменьшается при увеличении , коэффициенты ранговой корреляции будут равны -1, в то время как коэффициент корреляции момента произведения Пирсона может быть или не может быть близок к -1, в зависимости от того, насколько близки точки к прямой линии. Хотя в крайних случаях идеальной ранговой корреляции оба коэффициента равны (оба +1 или оба -1), обычно это не так, и поэтому значения двух коэффициентов не могут быть осмысленно сравнены. Например, для трех пар (1, 1) (2, 3) (3, 2) коэффициент Спирмена равен 1/2, а коэффициент Кендалла равен 1/3.
Икс{\ displaystyle x}у{\ displaystyle y}Икс{\ displaystyle x}у{\ displaystyle y}у{\ displaystyle y}Икс{\ displaystyle x}

Hard Reset средствами самой системы Android

Графическое представление коэффициента Фехнера

Пример №1. При разработке глинистого раствора с пониженной водоотдачей в высокотемпературных условиях проводили параллельное испытание двух рецептур, одна из которых содержала 2% КМЦ и 1% Na2CO3, а другая 2% КМЦ, 1% Na2CO3 и 0,1% бихромата калия. В результате получена следующие значения Х (водоотдача через 30 с).

X1 9 9 11 9 8 11 10 8 10
X2 10 11 10 12 11 12 12 10 9

Пример №2.
Коэффициент корреляции знаков, или коэффициент Фехнера, основан на оценке степени согласованности направлений отклонений индивидуальных значений факторного и результативного признаков от соответствующих средних. Вычисляется он следующим образом:


,

где na — число совпадений знаков отклонений индивидуальных величин от средней; nb — число несовпадений.

Коэффициент Фехнера может принимать значения от -1 до +1. Kф = 1 свидетельствует о возможном наличии прямой связи, Kф =-1 свидетельствует о возможном наличии обратной связи.

Рассмотрим на примере расчет коэффициента Фехнера по данным, приведенным в таблице:

Xi

Yi

Знаки отклонений значений признака от средней

Совпадение (а) или несовпадение (в) знаков

Для Xi

Для Yi

8

40

А

9

50

+

В

10

48

+

В

10

52

+

В

11

41

+

В

13

30

+

В

15

35

+

В

Для примера: .

Значение коэффициента свидетельствует о том, что можно предполагать наличие обратной связи.

Пример №2
Рассмотрим на примере расчет коэффициента Фехнера по данным, приведенным в таблице:
Средние значения:

Xi

Yi

Знаки отклонений от средней X

Знаки отклонений от средней Y

Совпадение (а) или несовпадение (b) знаков

12

220

+

B

9

1070

+

B

8

1000

+

B

14

606

+

B

15

780

+

+

A

10

790

+

B

10

900

+

B

15

544

+

B

93

5910

Значение коэффициента свидетельствует о том, что можно предполагать наличие обратной связи.

Интервальная оценка для коэффициента корреляции знаков

Пример №3.
Рассмотрим на примере расчет коэффициента корреляции знаков по данным, приведенным в таблице:

Xi Yi Знаки отклонений от средней X Знаки отклонений от средней Y Совпадение (а) или несовпадение (b) знаков
96 220 + B
52 1070 + B
60 1000 + B
89 606 + B
82 780 + + A
77 790 + B
70 900 + B
92 544 + B
618 5910

Значение коэффициента свидетельствует о том, что можно предполагать наличие обратной связи.

Оценка коэффициента корреляции знаков. Значимость коэффициента корреляции знаков.
По таблице Стьюдента находим tтабл:
tтабл (n-m-1;a) = (6;0.05) = 1.943
Поскольку Tнабл > tтабл , то отклоняем гипотезу о равенстве 0 коэффициента корреляции знаков. Другими словами, коэффициент корреляции знаков статистически — значим.

Доверительный интервал для коэффициента корреляции знаков.
Доверительный интервал для коэффициента корреляции знаков.
r(-1;-0.4495)

Чувствительность к распределению данных

Степень зависимости между переменными и не зависит от масштаба, в котором переменные выражены. То есть, если мы анализируем взаимосвязь между и , на большинство показателей корреляции не влияет преобразование в a  +  bX и в c  +  dY , где a , b , c и d являются константами ( b и d положительны). Это верно как для некоторых статистических данных по корреляции, так и для их популяционных аналогов. Некоторые статистические данные корреляции, такие как коэффициент ранговой корреляции, также инвариантны к монотонным преобразованиям предельных распределений и / или .
Икс{\ displaystyle X}Y{\ displaystyle Y}Икс{\ displaystyle X}Y{\ displaystyle Y}Икс{\ displaystyle X}Y{\ displaystyle Y}Икс{\ displaystyle X}Y{\ displaystyle Y}

Коэффициенты корреляции Пирсона / Спирмена между и показаны, когда диапазоны двух переменных не ограничены, и когда диапазон ограничен интервалом (0,1).Икс{\ displaystyle X}Y{\ displaystyle Y}Икс{\ displaystyle X}

Большинство мер корреляций чувствительны к форме , в которой и дискретизированной. Зависимости становятся сильнее, если рассматривать их в более широком диапазоне значений. Таким образом, если мы рассмотрим коэффициент корреляции между ростом отцов и их сыновей по всем взрослым мужчинам и сравним его с тем же коэффициентом корреляции, вычисленным, когда отцы выбраны ростом от 165 до 170 см, корреляция будет слабее в последнем случае. Было разработано несколько методов, которые пытаются исправить ограничение диапазона в одной или обеих переменных, и обычно используются в метаанализе; наиболее распространенными являются уравнения Торндайка II и III.
Икс{\ displaystyle X}Y{\ displaystyle Y}

Различные меры корреляции в использовании , может быть определена для некоторых совместных распределений X и Y . Например, коэффициент корреляции Пирсона определяется в терминах моментов и, следовательно, будет неопределенным, если моменты не определены. Всегда определяются показатели зависимости на основе квантилей . Статистические данные на основе выборки, предназначенные для оценки показателей зависимости населения, могут иметь или не иметь желаемых статистических свойств, таких как несмещенность или асимптотическая согласованность , в зависимости от пространственной структуры населения, из которого были взяты данные.

Чувствительность к распределению данных может быть использована с пользой. Например, масштабированная корреляция предназначена для использования чувствительности к диапазону, чтобы выделить корреляции между быстрыми компонентами временного ряда. Контролируемое сокращение диапазона значений позволяет отфильтровать корреляции в долгой шкале времени, и выявляются только корреляции в короткой шкале времени.

Критерии и методы

КРИТЕРИЙ СПИРМЕНА

Коэффициент ранговой корреляции Спирмена – это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.

Чарльз Эдвард Спирмен

1. История разработки коэффициента ранговой корреляции

Данный критерий был разработан и предложен для проведения корреляционного анализа в 1904 году Чарльзом Эдвардом Спирменом, английским психологом, профессором Лондонского и Честерфилдского университетов.

2. Для чего используется коэффициент Спирмена?

Коэффициент ранговой корреляции Спирмена используется для выявления и оценки тесноты связи между двумя рядами сопоставляемых количественных показателей. В том случае, если ранги показателей, упорядоченных по степени возрастания или убывания, в большинстве случаев совпадают (большему значению одного показателя соответствует большее значение другого показателя — например, при сопоставлении роста пациента и его массы тела), делается вывод о наличии прямой корреляционной связи. Если ранги показателей имеют противоположную направленность (большему значению одного показателя соответствует меньшее значение другого — например, при сопоставлении возраста и частоты сердечных сокращений), то говорят об обратной связи между показателями.

  1. Коэффициент корреляции Спирмена обладает следующими свойствами:
  2. Коэффициент корреляции может принимать значения от минус единицы до единицы, причем при rs=1 имеет место строго прямая связь, а при rs= -1 – строго обратная связь.
  3. Если коэффициент корреляции отрицательный, то имеет место обратная связь, если положительный, то – прямая связь.
  4. Если коэффициент корреляции равен нулю, то связь между величинами практически отсутствует.
  5. Чем ближе модуль коэффициента корреляции к единице, тем более сильной является связь между измеряемыми величинами.

3. В каких случаях можно использовать коэффициент Спирмена?

В связи с тем, что коэффициент является методом непараметрического анализа, проверка на нормальность распределения не требуется.

Сопоставляемые показатели могут быть измерены как в непрерывной шкале (например, число эритроцитов в 1 мкл крови), так и в порядковой (например, баллы экспертной оценки от 1 до 5).

Эффективность и качество оценки методом Спирмена снижается, если разница между различными значениями какой-либо из измеряемых величин достаточно велика. Не рекомендуется использовать коэффициент Спирмена, если имеет место неравномерное распределение значений измеряемой величины.

4. Как рассчитать коэффициент Спирмена?

Расчет коэффициента ранговой корреляции Спирмена включает следующие этапы:

  1. Сопоставить каждому из признаков их порядковый номер (ранг) по возрастанию или убыванию.
  2. Определить разности рангов каждой пары сопоставляемых значений (d).
  3. Возвести в квадрат каждую разность и суммировать полученные результаты.
  4. Вычислить коэффициент корреляции рангов по формуле:

Определить статистическую значимость коэффициента при помощи t-критерия, рассчитанного по следующей формуле:

5. Как интерпретировать значение коэффициента Спирмена?

При использовании коэффициента ранговой корреляции условно оценивают тесноту связи между признаками, считая значения коэффициента меньше 0,3 — признаком слабой тесноты связи; значения более 0,3, но менее 0,7 — признаком умеренной тесноты связи, а значения 0,7 и более — признаком высокой тесноты связи.

Также для оценки тесноты связи может использоваться шкала Чеддока:

xy
Теснота (сила) корреляционной связи
менее 0.3
слабая
от 0.3 до 0.5
умеренная
от 0.5 до 0.7
заметная
от 0.7 до 0.9
высокая
более 0.9
весьма высокая

Статистическая значимость полученного коэффициента оценивается при помощи t-критерия Стьюдента. Если расчитанное значение t-критерия меньше табличного при заданном числе степеней свободы, статистическая значимость наблюдаемой взаимосвязи — отсутствует. Если больше, то корреляционная связь считается статистически значимой.

Как вы можете рассчитать корреляцию с помощью Excel? — 2019

a:

Корреляция измеряет линейную зависимость двух переменных. Измеряя и связывая дисперсию каждой переменной, корреляция дает представление о силе взаимосвязи. Или, говоря иначе, корреляция отвечает на вопрос: сколько переменная A (независимая переменная) объясняет переменную B (зависимую переменную)?

Формула корреляции

Корреляция объединяет несколько важных и связанных статистических понятий, а именно дисперсию и стандартное отклонение. Разница — дисперсия переменной вокруг среднего, а стандартное отклонение — квадратный корень дисперсии.

Формула:

Поскольку корреляция требует оценки линейной зависимости двух переменных, то, что действительно необходимо, — это выяснить, какая сумма ковариации этих двух переменных и в какой степени такая ковариация отраженные стандартными отклонениями каждой переменной в отдельности.

Общие ошибки с корреляцией

Самая распространенная ошибка — предполагать, что корреляция, приближающаяся +/- 1, статистически значима. Считывание, приближающееся +/- 1, безусловно увеличивает шансы на фактическую статистическую значимость, но без дальнейшего тестирования это невозможно узнать.

Статистическое тестирование корреляции может усложняться по ряду причин; это совсем не так просто. Критическое предположение о корреляции состоит в том, что переменные независимы и связь между ними является линейной.

Вторая наиболее распространенная ошибка — забыть нормализовать данные в единую единицу. Если вычислять корреляцию по двум бетам, то единицы уже нормализованы: сама бета является единицей

Однако, если вы хотите скорректировать акции, важно, чтобы вы нормализовали их в процентном отношении, а не изменяли цены. Это происходит слишком часто, даже среди профессионалов в области инвестиций

Для корреляции цен на акции вы, по сути, задаете два вопроса: каково возвращение за определенное количество периодов и как этот доход коррелирует с возвратом другой безопасности за тот же период? Это также связано с тем, что корреляция цен на акции затруднена: две ценные бумаги могут иметь высокую корреляцию, если доход составляет ежедневно процентов за последние 52 недели, но низкая корреляция, если доход ежемесячно > изменения за последние 52 недели. Какая из них лучше»? На самом деле нет идеального ответа, и это зависит от цели теста. ( Улучшите свои навыки excel, пройдя курс обучения Excel в Академии Excel. ) Поиск корреляции в Excel

Существует несколько методов расчета корреляции в Excel

Самый простой способ — получить два набора данных и использовать встроенную формулу корреляции:

Это удобный способ расчета корреляции между двумя наборами данных. Но что, если вы хотите создать корреляционную матрицу во множестве наборов данных? Для этого вам нужно использовать плагин анализа данных Excel. Плагин можно найти на вкладке «Данные» в разделе «Анализ».

Выберите таблицу возвратов. В этом случае наши столбцы имеют названия, поэтому мы хотим установить флажок «Ярлыки в первой строке», поэтому Excel знает, как обрабатывать их как заголовки. Затем вы можете выбрать вывод на том же листе или на новом листе.

Как только вы нажмете enter, данные будут автоматически сделаны. Вы можете добавить текст и условное форматирование, чтобы очистить результат.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector