Матрица va или ips что лучше

Плюсы и минусы IPS LCD матрицы

Имеют широкие углы обзора, один из лучших показателей качества цветопередачи и контрастности среди LCD матриц (дисплеев).

Однако, из-за больших ступеней, прослойки кристаллов и определённого расположения электродов – имеет значительно большее время отклика, чем у матриц TN. Происходит это за счёт большего необходимого времени для позиционирования всех кристаллов в нужном положении.

Пользуются популярностью у энтузиастов, графических дизайнеров, мастеров пред печатной подготовки, работающих с профессиональными графическими пакетами, где важна качество цветопередачи, контрастность и точность оттенков.

Данные мониторы имеют немного большую толщину, чем TN модели. Это получается из-за необходимости использовать более мощные по светопроникающей способности и яркости лампы, а следовательно требуется и больше слоёв для рассеивающего материала.

Часто встречаются IPS панели, подсвечиваемые светодиодной подсветкой. В них используются либо мощные светодиоды, либо матрицы с повышенной светопропускающей способностью.

Первый случай используется на крупных панелях, второй на небольших (мониторы, смартфоны, планшетные ПК). Повышенной светопропускной способностью обладают к примеру S-IPS II и E-IPS. Всё это конечно не обходится без ущерба для характеристик матрицы.

Среди конкурентов IPS можно выделить MVA/PVA матрицы, которые имеют свои недостатки, но и плюсы в виде значительно лучшей статической контрастности, к примеру.

Самые распространённые разновидности и буквенные обозначения IPS матриц:

S-IPS (Super-IPS) – была разработана в 1998 году, как улучшенная технология стандартнойIPS. Имеет улучшенную контрастность и меньшее время отклика, чем у оригинальной матрицы.

AS-IPS (Advanced Super-IPS, 2002) – в сравнении с S-IPS матрицей, улучшена контрастность и прозрачность самой матрицы, что улучшает яркость.

H-IPS (Horisontal-IPS, 2007) – контрастность ещё более улучшена, а так же проведена оптимизация белого цвета, сделав его более реалистичным. Созданы для профессиональных фото редакторов, дизайнеров, 3D/2D мастеров и т.д.

P-IPS (Professional-IPS, 2010) – обеспечивает 102-процентный охват цветового пространства NTSC и 98-процентный Adobe RGB (30 бит или 10 бит на каждый субпиксель (1.07 млрд. цветов)), что делает данную ЖК технологию, одной из лучших в мире. Так же, улучшено время отклика и глубина True Colour режима. Является разновидностью H-IPS. По праву считается профессиональным типом матриц и цена на неё сохраняется одной из самых высоких.

E-IPS (Enhanced-IPS, 2009) — улучшено время отклика (до 5мс), улучшена прозрачность, что позволило использовать менее мощные и более дешёвые лампы подсветки. Стоить заметить, что данные улучшения, скорее всего не лучшим образом скажутся на цветопередаче и качестве полутонов, ведь часть кристаллов, чисто технически была урезана. Тоже является разновидностью H-IPS.

S-IPS II — схожа по характеристикам с E-IPS. Немного меньше glow (глоу) эффект. По сути не является производной H-IPS, а считается отдельным ответвлением.

Продвижением и разработкой данных матриц, в основном занимается компания LG-Displays.

В конце 2011 года была представлена альтернатива матрицам от LG, корейским производителем электроники Samsung. Разработка получила название PLS (Plane-to-Line Switching) и кроме схожего названия, базируется тоже на IPS принципах построения матриц.

PLS — матрицы имеют более выгодные характеристики в возможности размещать пиксели более плотно, в высокой светопропускаемости и яркости, а также чуть меньшее энергопотребление чем у IPS. Но есть у PLS и значительные минусы. Самая низкая контрастность среди ЖК матриц, цветовой охват не более sRGB.

Эти два недостатка, автоматически исключают творение Samsung из стана профессиональных решений, но раздвигает рамки для массового рынка, куда разработка собственно говоря и метила.

Матрицы PLS, скорее всего будут применяться как в мониторах, так и в телевизорах, смартфонах и планшетах компании, и её партнёров.

Подсветка

Основная статья: Подсветка ЖК-дисплеев

Сами по себе жидкие кристаллы не светятся. Чтобы изображение на жидкокристаллическом дисплее было видимым, нужен источник света. Источник может быть внешним (например, Солнце) либо встроенным (подсветка). Обычно лампы встроенной подсветки располагаются позади слоя жидких кристаллов и просвечивают его насквозь (хотя встречается и боковая подсветка, например, в часах).

Внешнее освещение

Монохромные дисплеи наручных часов и мобильных телефонов большую часть времени используют внешнее освещение (от Солнца, ламп комнатного освещения и так далее). Обычно позади слоя пикселей из жидких кристаллов находится зеркальный или матовый отражающий слой. Для использования в темноте такие дисплеи снабжаются боковой подсветкой. Существуют также трансфлективные дисплеи, в которых отражающий (зеркальный) слой является полупрозрачным, а лампы подсветки располагаются позади него.

Электролюминесцентная панель

Монохромные ЖК-дисплеи некоторых часов и приборных индикаторов используют для подсветки электролюминесцентную панель. Эта панель представляет собой тонкий слой кристаллофосфора (например, сульфида цинка), в котором происходит электролюминесценция — свечение под действием тока. Обычно светится зеленовато-голубым или жёлто-оранжевым светом.

Подсветка газоразрядными («плазменными») лампами

В течение первого десятилетия XXI века подавляющее большинство LCD-дисплеев имело подсветку из одной или нескольких газоразрядных ламп (чаще всего с холодным катодом — CCFL, хотя недавно стали использоваться и EEFL). В этих лампах источником света является плазма, возникающая при электрическом разряде через газ. Такие дисплеи не следует путать с плазменными дисплеями, в которых каждый пиксель светится сам и является миниатюрной газоразрядной лампой.

Светодиодная (LED) подсветка

Основная статья: Светодиодная подсветка

Начиная с 2007 года получили распространение ЖК-дисплеи, имеющие подсветку из светодиодов (LED). Такие ЖК-дисплеи (в торговле называемые LED TV или LED-дисплеями) не следует путать с настоящими LED-дисплеями, в которых каждый пиксель светится сам и является миниатюрным светодиодом.

Подсветка RGB-LED

При подсветке RGB-LED источниками света являются красные, зелёные и синие светодиоды. Она даёт широкий цветовой охват, но из-за дороговизны была вытеснена с потребительского рынка другими типами подсветки.

Подсветка WLED

При подсветке WLED источниками света являются белые светодиоды, то есть синие светодиоды, на которые нанесён слой люминофора, превращающий большую часть синего света в почти все цвета радуги. Так как вместо «чистых» зелёного и красного цветов имеется широкий спектр, цветовой охват такой подсветки уступает другим разновидностям. На 2020 год это наиболее распространённый тип подсветки цветных ЖК-дисплеев.

Подсветка GB-LED (GB-R LED)

При подсветке GB-LED источниками света являются зелёные и синие светодиоды, покрытые люминофором, превращающим часть их излучения в красный цвет.. Такая подсветка даёт довольно широкий цветовой охват, но является довольно дорогой.

LED-подсветка с использованием квантовых точек (QLED, NanoCell)

При подсветке с использованием квантовых точек первичными источниками света являются синие светодиоды. Свет от них попадает на особые наночастицы (квантовые точки), которые превращают синий свет либо в зелёный, либо в красный свет. Квантовые точки либо наносятся на сами светодиоды, либо на плёнку или стекло. Такая подсветка даёт широкий цветовой охват. Samsung для неё использует название QLED, а компания LG — NanoCell. Sony для этой технологии использует название Triluminos, которое раньше Sony использовала для подсветки RGB-LED:.

LCD

Liquid Crystal Display, он же LCD, или жидкокристаллический (ЖК) дисплей, знаком нам не только по смартфонам, но и другой электронике – телевизорам и ноутбукам. В основе технологии лежат жидкие кристаллы цианофенила, которые меняют свое положение под действием электрического тока. Вслед за этим меняется и поляризация, то есть эти частички выступают фильтрами, которые пропускают определенный цветовой спектр.

LCD-дисплеи используются в недорогих смартфонах, но далеко не все производители используют эту технологию. Например, в Qualcomm сообщили о том, что они не могут совместить сканеры с LCD-дисплеями, так как для этого требуются дорогие OLED-матрицы.

Преимущества: хорошая фокусировка и четкость изображения, минимум ошибок при сведении лучей, минимум нарушений геометрии, малый вес.

Недостатки: низкие параметры яркости и контрастности, небольшой запас механической прочности.

Влияние матрицы монитора на зрение

В сущности, ЖКТ и светодиодные мониторы намного более безопасны для зрения и здоровья, чем их кинескопные аналоги. Тем не менее, определенный вред глазам они все же приносят. Первое и основное – частота мерцания подсветки изображения на экране. Оно в отличие от ЭЛТ мониторов никакого отношения к частоте обновления изображения не имеет, которой для LCD экранов вполне достаточно и 60Гц при любом разрешении. Суть его – чтобы улучшить характеристики цветопередачи, во многих мониторах используется определенное мерцание светового потока, от 200 до 400 Гц.

Определить его достаточно просто. При низких показателях этой характеристики будет виден след от проводимого предмета между глазами человека и экраном. Опять же, важна и четкость изображения, а также яркость основных цветов. При размытом, тусклом или не контрастном – зрение быстро устает, что может привести к его последующему ухудшению, особенно если приходится много времени проводить за монитором.

TN матрица

Весь вред подобных экранов вырастает из-за недостатков технологии. Изменение светового потока, в зависимости от угла обзора, мерцание и размытость изображения – все это дает очень большую нагрузку на глаза пользователя.

Кроме того, чисто психологически для человека важно видеть чистый белый цвет, который многие TN мониторы не дают, заменяя его светло-желтым. Опять же, контрастность подобных экранов ниже, чем у более дорогих собратьев.

IPS матрица

Среди жидкокристаллических дисплеев – это, наверное, самый лучший вариант для зрения. Низкий уровень мерцания, сочная цветопередача – вот плюсы подобных матриц. К сожалению, не всегда бывает оправдано их приобретение, как ценой, так и определенными нишами применения. К примеру, большинство обладает некоторой, вроде бы незаметной, тем не менее создающей дискомфорт инерционностью.

OLED матрица

С точки зрения современной медицины – это один из наиболее безопасных для зрения видов экранов. Яркое, а главное четкое изображение — их основной плюс. К этому стоит добавить правильную цветопередачу, отсутствие мерцания и изменения цвета в зависимости от углов обзора.

То же самое по большей части касается гибридных AMOLED дисплеев. Единственный недостаток, но не для здоровья – цена, которая, впрочем, постепенно уменьшается в связи с распространением и развитием технологии.

Существует, правда, и мнение об определенном вреде для зрения от OLED дисплеев. Оно пока не доказано, но тоже имеет право на существование. Здесь как раз проявляется фактор удешевления производства. Для регулирования яркости горения конкретной точки экрана можно пользоваться двумя методами – регуляцией напряжения для каждого пикселя (аналоговый метод) или используя токи одной характеристики, но подаваемые импульсным методом (ШИМ – широтно-импульсная модуляция). Зрение же человека, за счет инерционности, будет видеть разную силу света в зависимости от частоты вспышек.

Так вот, для удешевления производства и уменьшения сложности прибора, изготовители предпочитают применять второй метод изменения тона изображения в каждой конкретной точке. Проблема здесь может быть сокрыта в самой частоте. Глаз, при использовании мерцания менее 300 Гц – его видит, что может вызывать определенную усталость при работе сетчатки.

Но хотелось бы заметить два фактора: цена на OLED и AMOLED дисплеи настолько высока, что смысла в подобной экономии просто нет или, по крайней мере, характеристики частот будут намного выше небезопасного уровня. Ну а второй – никакому из производителей не выгодно, чтобы его продукцию, особенно премиум – класса, начали ругать и перестали приобретать.

Основные типы матриц компьютерных мониторов

В общем случае все представленные сейчас на рынке мониторы имеют матрицу одного из трёх наиболее распространенных типов — TN, IPS и *VA. О них мы и поговорим поподробнее.

TN матрицы

Технология TN (Twisted Nematic) — самая старая из рассматриваемых в этой статье и проверенная годами, вследствие чего хорошо доработана и из неё уже «выжат максимум» её возможностей. Мониторы с матрицей типа TN обычно самые дешевые в цене, и именно поэтому они пользуются большой популярностью и занимают большинство полок магазинов.

Мониторы такого типа установлены во всех государственных учреждениях, учебных заведениях и большинстве офисов именно благодаря своей цене. И это, в целом, логично, для работы в офисных приложениях их эффективности хватает вполне. По статистике на данный момент около 90% всех используемых мониторов имеют матрицу именно этого типа.

Основные плюсы TN:

  • низкая цена,
  • низкое время отклика.

Основные минусы TN:

  • цветопередача,
  • плохие углы обзора,
  • устаревшая технология,
  • энергопотребление,
  • низкая цена производства увеличивает вероятность получить дефектный монитор.

IPS матрицы

Технология IPS (In-Plane Switching) также далеко не новая разработка, однако доступные мониторы на матрицах этого типа стали появляться гораздо позже вследствие дороговизны производства. Мониторы на матрицах IPS даже сейчас стоят значительно дороже своих аналогов на TN и до последнего времени использовались в основном дизайнерами, фотографами и бизнесменами (это уже скорее следствие того, что во всех устройствах Apple установлены именно IPS матрицы).

Данная технология, несмотря на свои высокие качественные характеристики, ежегодно продолжает совершенствоваться, в результате чего появляются различные вариации — AH-IPS, P-IPS, H-IPS, S-IPS, e-IPS. Отличия между ними довольно незначительны и обычно узконаправленны, к примеру, снижение времени отклика, или увеличение контрастности.

Основные плюсы IPS:

  • отличная цветопередача,
  • хорошая яркость и контрастность,
  • хорошие углы обзора,
  • реалистичное качество картинки.

Основные минусы IPS:

  • высокая цена,
  • низкое время отклика,
  • контрастность хуже, чем у *VA матриц.

*VA матрицы

Технология *VA (Vertical Alignment), более известная в странах СНГ как MVA или PVA (именно поэтому она обозначается с символом «*» перед «VA», т.к. в различных вариациях и странах первая буква может отличаться). Не так давно к этой аббревиатуре добавился и вариант с суффиксом «S», т.е. «Super», однако каких-то серьезных изменений это не добавило.

Сама по себе технология была разработана как продолжение TN и должна была устранить некоторые её недостатки, однако в результате борьбы с ними она приобрела собственные, обратные. Можно сказать что плюсы TN — это минусы *VA, и наоборот. Однако потребности у потребителей часто бывают совершенно разные, и даже противоположные, поэтому мониторы на таких матрицах также нашли своего покупателя на рынке.

Основные плюсы *VA:

  • отличные углы обзора,
  • отличная цветопередача,
  • глубокий черный цвет.

Основные минусы *VA:

  • низкое время отклика,
  • высокая цена на качественные модели,
  • не подходит для динамических сцен (игр, фильмов).

Подводя итог можно сказать, что до сих пор не существует идеального монитора, который устроил бы каждого и подходил для любого занятия — для игр лучше одно, для работы другое, для мультимедиа третье. Определитесь, какое будет основное направление использования вашего монитора и основываясь на информацию выше вы точно сделаете правильный выбор.

OchProsto.com

Это интересно: На что обратить внимание при выборе матового или глянцевого экрана ноутбука или монитора — это познавательно

IGZO LCD

Самое интересное в этой технологии – то, как расшифровывается ее аббревиатура. Indium gallium zinc oxide в переводе означает «Оксид индия, галлия и цинка». Эти вещества стали основой для полупроводникового материала, который используется в качестве канала для тонкопленочных транзисторов. Дебют технологии IGZO состоялся в 2012 году с легкой подачи компании Sharp, которая на выставке в Берлине продемонстрировала первые панели на основе IGZO LCD

Они не требуют постоянного обновления при демонстрации неподвижных объектов, поэтому экономно расходуют энергию аккумулятора, а это важно для современных смартфонов!

Матрица IGZO LCD более тонкая и прозрачная, чем IPS- и LCD-аналоги, не нуждается в дополнительной подсветке и выдает изображение высокой четкости. Это последствия того, что сами транзисторы стали меньше, а электроны в них перемещаются быстрее.

Если первые смартфоны с IGZO LCD-дисплеями выпускала только компания Sharp, то позже ими заинтересовались другие производители. Например, это сделал производитель Meizu, который с небольшим перерывом выпустил два смартфона с аналогичными матрицами: M2 Note и M6 Note.

Преимущества: топовое разрешение, энергоэффективность, быстрый отклик сенсора, максимальные углы обзора, высокие значения яркости и контрастности.

Недостатки: стоимость.

Выбор монитора: TN или IPS

Экраны, построенные на технологиях TN и IPS, на сегодняшний день являются наиболее распространенными и охватывают практически весь спектр потребностей бюджетного и, частично, профессионального рынка. Существуют и другие типы матриц VA (MVA, PVA), AMOLED (с подсветкой уже каждого пикселя). Но они пока настолько дороги, что их распространение невелико.

Цветопередача и контрастность

Мониторы с IPS матрицей имеют контрастность намного лучше, чем у TN

При этом очень важно понимать: если вся картинка полностью темная или светлая, то такая контрастность – это просто возможности подсветки. Часто производители при равномерных заливках просто приглушают свет ламп подсветки

Чтобы убедиться в качестве контрастности, следует на экран вывести шахматную заливку и проверить насколько будут отличаться темные участки от светлых. Как правило, контрастность в таких тестах становится меньше 30 – 40 раз. Значение контрастности на шахматной доске в 160:1 – приемлемый результат.

Цветопередача IPS экранов осуществляется практически без искажений, в отличие от TN. Чем выше контрастность, тем насыщеннее получается картинка на экране. Это может быть полезно не только при работе с программами по обработке фотографий и видео, но также и при просмотре фильмов. Но есть усовершенствованные версии TN матриц, например, Retina от Apple, которые практически не теряют в цветопередаче.

Угол обзора и яркость

Пожалуй, этот параметр один из первых, который показывает преимущества IPS в сравнении со своим более дешевым конкурентом. Он достигает 170 — 178°, в то время как у улучшенной версии – «TN + film» он находится в диапазоне 90 — 150°. По этому параметру IPS выигрывает. Если вы смотрите маленькой компанией дома телевизор, то это не критично, но вот для случая смартфонов, когда хочется кому-то что-то показать на экране – искажение будет существенным. Поэтому на них чаще всего используются матрицы типа IPS.

По характеристикам яркости IPS экраны также выигрывают. Большие значения яркости и TN матриц делают картинку просто белесой без черных оттенков.

Время отклика и ресурсоемкость

Очень важный критерий, особенно если пользователь часто играет в приложения с динамически меняющимися сценами. У экранов на основе матрицы TN этот параметр достигает величины 1 мс, в то время как у лучших и дорогих версий S -IPS всего 5 мс. Хотя и этот результат хорош для IPS. Если пользователю важен высокий FPS и он не хочет созерцать шлейфы от объектов, то выбор стоит остановить на матрице типа TN.

Помимо скорости изменения картинки, у TN экранов есть еще два преимущества: низкая стоимость и небольшое энергопотребление.

Сенсорный экран и мобильные устройства

В последнее время стали очень распространенными устройства с емкостными сенсорными экранами. Как правило, они оснащаются матрицами IPS из-за высокого количества точек на дюйм. Чем выше плотность точек, тем более гладкими получаются шрифты на экране планшета (даже неразличимы пикселы для глаза). При использовании TN матриц в смартфонах или планшетах будет очень заметна зернистость картинки. В мониторах и телевизорах данный параметр не критичен.

Сенсорным покрытием, как правило, оснащаются именно устройства, где нужен тачскрин. Поскольку чаще всего TN матрицы берут из-за их дешевизны, то такой дорогостоящий атрибут, как емкостной экран на среднем бюджетном мониторе с разрешением 24 дюйма будет просто пустой тратой денег. В то время как на маленькой по площади поверхности планшета или смартфона (до 6 дюймов) емкостный экран просто необходим.

Именно из-за фактора дешевизны TN матрицу от IPS можно отличить нажатием: при нажатии на TN экран картинка под пальцем и вокруг начинает расплываться волнами со спектральным градиентом. Стало быть, при выборе мобильного устройства выбор в пользу IPS по этому параметру просто очевиден.

Преимущества и недостатки

Искажение цветности и контрастности изображения на ЖК-мониторе с малым углом обзора матрицы, при взгляде под малым углом к его плоскости

Макрофотография бракованной ЖК-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).

Разбитая матрица смартфона

К преимуществам жидкокристаллических дисплеев можно отнести малые размер и массу в сравнении с ЭЛТ. У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и чёткостью. Энергопотребление ЖК-мониторов в зависимости от модели, настроек и выводимого изображения может как совпадать с потреблением ЭЛТ и плазменных экранов сравнимых размеров, так и быть существенно — до пяти раз — ниже. Энергопотребление ЖК-мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight — задний свет) ЖК-матрицы. Во многих мониторах 2007 года для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более герц.

Малогабаритные ЖК-дисплеи без активной подсветки, применяемые в электронных часах, калькуляторах и т. п., обладают чрезвычайно низким энергопотреблением, что обеспечивает длительную (до нескольких лет) автономную работу таких устройств без замены гальванических элементов.

С другой стороны, ЖК-мониторы имеют и множество недостатков, часто принципиально трудноустранимых, например:

  • в отличие от ЭЛТ, могут отображать чёткое изображение лишь при одном («штатном») разрешении. Остальные достигаются интерполяцией;
  • по сравнению с ЭЛТ, ЖК-мониторы имеют малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения;
  • из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки) — на некоторых мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах), связанная с использованием блоков линейных ртутных ламп;
  • фактическая скорость смены изображения также остаётся заметно ниже, чем у ЭЛТ и плазменных дисплеев. Технология overdrive решает проблему скорости лишь частично;
  • зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии. В ЭЛТ-дисплеях эта проблема полностью отсутствует;
  • массово производимые ЖК-мониторы плохо защищены от механических повреждений. Особенно чувствительна матрица, не защищённая стеклом. При сильном нажатии возможна необратимая деградация;
  • существует проблема дефектных пикселей. Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2 (в России — ГОСТ Р 52324-2005). Стандарт определяет 4 класса качества ЖК-мониторов. Самый высокий класс — 1, вообще не допускает наличия дефектных пикселей. Самый низкий — 4, допускает наличие до 262 дефектных пикселей на 1 миллион работающих. Мониторы с ЭЛТ этой проблеме не подвержены;
  • пиксели ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения, за исключением лазерных дисплеев, вообще не подверженных ей.
  • не очень большой диапазон рабочих температур: происходит ухудшение динамических характеристик (и далее неработоспособность) при даже небольших отрицательных температурах окружающей среды.
  • матрицы довольно хрупкие, а их замена весьма дорогостоящая

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED-дисплеи (матрица с органическими светодиодами), однако она встретила много сложностей в массовом производстве, особенно для матриц с большой диагональю.

Что такое PLS

PLS – это авторская технология компании Samsung.

Очень долгое время производитель не говорил вообще ничего о своем детище и многие эксперты выдвигали различные предположения относительно характеристик PLS.

Собственно, и сейчас эта технология является покрытой большим количеством тайн. Но мы все-таки найдем правду!

PLS была выпущена в 2010 году в качестве альтернативы вышеупомянутой IPS.

Эта аббревиатура расшифровывается как Plane To Line Switching (то есть «переключение между линиями»).

Напомним, что IPS – это In-Plane-Switching, то есть «переключение между линиями». Имеется в виду переключение в плоскости.

И выше мы говорили о том, что в этой технологии жидкокристаллические молекулы быстро становятся плоскими и за счет этого достигается лучший угол обзора и другие характеристики.

Так вот, в PLS все происходит точно так же, но быстрее. На рисунке №2 все это показано наглядно.

Рис. №2. Работа PLS и IPS

На этом рисунке вверху находится сам экран, затем кристаллы, то есть те же ЖК молекулы, что на рисунке №1 были обозначены синими палочками.

Снизу показан электрод. Слева в обоих случаях показано их расположение выключенном состоянии (когда кристаллы не двигаются), а справа – во включенном.

Принцип работы такой же – когда начинается работа кристаллов, они начинают двигаться, при этом изначально они расположены параллельно друг другу.

Но, как видим на рисунке №2, эти кристаллы быстрее приобретают нужную форму – ту, которая необходима для максимально качественного отображения картинки.

За определенный отрезок времени молекулы в IPS мониторе не становятся в перпендикулярное положение, а в PLS становятся.

То есть в обеих технологиях все то же самое, но в PLS все происходит быстрее.

Отсюда промежуточный вывод – PLS работает быстрее и, по идее, именно эту технологию можно было бы считать лучшей в нашем сравнении.

Но окончательные выводы пока что делать рановато.

Это интересно: Компания Samsung несколько лет назад подала иск на LG. В нем утверждалось, что технология AH-IPS, которая используется LG, является модификацией технологии PLS. Отсюда можно сделать вывод, что PLS – это разновидность IPS и это признал сам разработчик. Собственно, это подтвердили и мы немного выше.

Что лучше PLS или IPS? Как выбрать хороший экран — руководство

Что лучше PLS или IPS? Как выбрать хороший экран — руководство

А что если я ничего не понял?

В таком случае вам поможет видео, которое находится в конце этой статьи. Там наглядно показаны мониторы TFT и IPS в разрезе.

Вы сможете увидеть, как все это работает и понять, что PLS все происходит точно так же, но быстрее, чем в IPS.

Теперь можем переходить к дальнейшему сравнению технологий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector